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1 Current division of team work
Summary: we have defined the necessary structures that are used in the proof. Namely, ideal
products, the corner ring, and matrix units. We have proved two major auxiliary theorems that
are used in the proof of the main theorem: Brauer’s lemma and theorem 26. Our next target is
theorem 25 which is the last prerequisite of the main theorem. After that, we will split the proof
of the main theorem into manageable parts.

• Matevž Miščič: Has done some major parts of the proof: theorem 6, properties of ideal
products and set-like products, properties of corner rings, Brauer’s lemma, theorem 19,
theorem 24, and theorem 11. Now he is helping the new members.

• Maša Žaucer: Assigned and working on theorem 17 and theorem 25 as an introduction
to the project. After that, she will split the proof of the main theorem 28. This will include
setting up the definitions of subrings for which the conclusion of the statement holds. A
handful of intermediary lemmas will be needed to enable the use of the artinian property.

• Job Petrovčič: Has done some major parts of the proof: initial project setup, definition
of ideal products, definition of corner ring, basic properties of corner rings, definition of
matrix units, and theorem 26. Now he is helping the new members.

If time permits, we will work on the uniqueness part of the proof.

2 Preliminaries
Definition 1 (Set 𝑎𝑅𝑏). For 𝑎, 𝑏 ∈ 𝑅, denote by 𝑎𝑅𝑏 the set {𝑎𝑟𝑏|𝑟 ∈ 𝑅}.

Definition 2 (Left/Right Ideal). A left/right ideal 𝐼 of a ring 𝑅 is an additive subgroup of 𝑅
such that 𝑟𝐼 ⊆ 𝐼 for all 𝑟 ∈ 𝑅 or 𝐼𝑟 ⊆ 𝐼 for all 𝑟 ∈ 𝑅, respectively.

Definition 3 (Two-sided Ideal). A two-sided ideal is a subset of 𝑅 that is both left and right
ideal of 𝑅.

Definition 4 (Product of Ideals). A product of (left/right/two-sided) ideals 𝐼 and 𝐽 is the ideal
𝐼𝐽 generated by the set of all pairwise products of elements of 𝐼 and 𝐽 .

Definition 5 (Prime Ring). A ring is prime if we have 𝐼 = 0 or 𝐽 = 0 whenever 𝐼𝐽 = 0 for
some left ideals 𝐼 and 𝐽 .

Theorem 6. A ring is prime if and only if for all 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑅𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0.
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Proof. (⇒) Suppose 𝑎𝑅𝑏 = 0. Then (𝑅𝑎)(𝑅𝑏) = 0, thus by primality 𝑅𝑎 = 0 or 𝑅𝑏 = 0. In the
former case we get 𝑎 = 1 ⋅ 𝑎 ∈ 𝑅𝑎 and thus 𝑎 = 0 and in the latter case we get 𝑏 = 1 ⋅ 𝑏 ∈ 𝑅𝑏 and
thus 𝑏 = 0.

(⇐) Suppose 𝐼𝐽 = 0. Then 𝑎𝑅𝑏 ⊆ 𝐼𝐽 = 0 for any 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽 . By assumption we get
𝑎 = 0 or 𝑏 = 0, so at least one of 𝐼 and 𝐽 is zero.

Theorem 7. A ring is prime if and only if for all two-sided ideals 𝐼 and 𝐽 , 𝐼𝐽 = 0 implies
𝐼 = 0 or 𝐽 = 0.

Proof. (⇒) Two-sided ideals are left ideals, so the result follows directly from definiton.
(⇐) Suppose 𝑎𝑅𝑏 = 0. Then (𝑅𝑎𝑅)(𝑅𝑏𝑅) = 0. By assumption 𝑅𝑎𝑅 = 0 or 𝑅𝑏𝑅 = 0. Thus

𝑎 = 0 or 𝑏 = 0 so the result follows from the previous theorem.

Definition 8 (Simple Ring). A ring is simple if it has no nontrivial two-sided ideals.

Theorem 9. A simple ring is prime.

Proof. Suppose 𝐼𝐽 = 0. If both 𝐼 and 𝐽 are nonzero, they must be equal to 𝑅 by simplicity.
But 𝑅𝑅 = 𝑅 ≠ 0, a contradiction.

Definition 10 (Orthogonal Elements). Two elements 𝑎, 𝑏 ∈ 𝑅 are orthogonal if 𝑎𝑏 = 𝑏𝑎 = 0.

3 Proof of Artin-Wedderburn Theorem for prime and sim-
ple rings

The proof is heavily based on [1].

Theorem 11. If 𝑒, 𝑓 ∈ 𝑅 are orthogonal idempotents and 𝑓 ≠ 0, then the left ideal generated by
1 − 𝑒 − 𝑓 is strictly smaller than the left ideal generated by 1 − 𝑒.

Proof. Note that (1−𝑒−𝑓)(1−𝑒) = 1−𝑒−𝑓 , and hence 𝑥(1−𝑒−𝑓) = 𝑥(1−𝑒−𝑓)(1−𝑒) ∈ 𝑅(1−𝑒)
for every 𝑥 ∈ 𝑅. This proves that 𝑅(1 − 𝑒) ⊇ 𝑅(1 − 𝑒 − 𝑓).

We have 𝑓 = 𝑓(1 − 𝑒) ∈ 𝑅(1 − 𝑒), while 𝑓 = 𝑥(1 − 𝑒 − 𝑓) with 𝑥 ∈ 𝑅 implies 0 = 𝑓(1 − 𝑓) =
𝑥(1 − 𝑒 − 𝑓)(1 − 𝑓) = 𝑥(1 − 𝑒 − 𝑓) = 𝑓 , a contradiction. Therefore, 𝑅(1 − 𝑒) ≠ 𝑅(1 − 𝑒 − 𝑓).

From here on, let 𝑒 and 𝑓 denote orthogonal idempotents in 𝑅.

Definition 12 (Corner Ring Set). The set of the corner ring is 𝑒𝑅𝑒.

Theorem 13. An element 𝑥 is in the set 𝑒𝑅𝑓 if and only if 𝑥 = 𝑒𝑥𝑓.

Proof. (⇒) Suppose 𝑥 ∈ 𝑒𝑅𝑓 . Then 𝑥 = 𝑒𝑦𝑓 for some 𝑦 ∈ 𝑅. But then 𝑒𝑥𝑓 = 𝑒𝑒𝑦𝑓𝑓 = 𝑒𝑦𝑓 = 𝑥.
(⇐) Clear.

Theorem 14. An element 𝑥 of 𝑅 is in the corner ring if and only if 𝑥 = 𝑒𝑥𝑒.

Proof. Application of theorem 13.

Theorem 15. An element 𝑥 of the corner ring is of the form 𝑒𝑦𝑒 for some 𝑦 ∈ 𝑅.

Proof. Clear from the theorem 14

Theorem 16. The corner ring is a (non-unital) subring of 𝑅. It has its own unit 𝑒.
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Proof. If 𝑎, 𝑏 ∈ 𝑒𝑅𝑒, then 𝑎 + 𝑏 = 𝑒𝑎𝑒 + 𝑒𝑏𝑒 = 𝑒(𝑎 + 𝑏)𝑒 so 𝑒𝑅𝑒 is closed under addition. If
𝑎, 𝑏 ∈ 𝑒𝑅𝑒, then 𝑎𝑏 = 𝑒𝑎𝑒𝑒𝑏𝑒 = 𝑒𝑎𝑏𝑒, so 𝑒𝑅𝑒 is closed under multiplication. Distributivity and
associativity are inherited from 𝑅.

Since 𝑒𝑎 = 𝑒𝑒𝑎𝑒 = 𝑒𝑎𝑒 = 𝑎 = 𝑒𝑎𝑒 = 𝑒𝑎𝑒𝑒 = 𝑎𝑒 for any 𝑎 ∈ 𝑒𝑅𝑒, 𝑒 is the unit of 𝑒𝑅𝑒.

Theorem 17. If 𝑅 is left artinian, then the corner ring is left artinian.

Proof. Let 𝐿1 ⊇ 𝐿2 ⊇ … be a descending chain of left ideals in 𝑒𝑅𝑒. Then 𝑅𝐿1 ⊇ 𝑅𝐿2 ⊇ … is
a descending chain of left ideals in 𝑅. Since 𝑅 is left artinian, this chain stabilizes. But then
so does 𝑒𝑅𝐿1 ⊇ 𝑒𝑅𝐿2 ⊇ …. But since 𝑒𝑅𝐿𝑖 = 𝑒𝑅𝑒𝐿𝑖 = 𝐿𝑖, the chain 𝐿1 ⊇ 𝐿2 ⊇ … also
stabilizes.

Theorem 18. If 𝑅 is a prime ring, then the corner ring is prime.

Proof. Suppose 𝑎𝑒𝑅𝑒𝑏 = 0 for 𝑎, 𝑏 ∈ 𝑒𝑅𝑒. Then 𝑎𝑒 = 𝑎 = 0 or 𝑒𝑏 = 𝑏 = 0 by 6, and by the same
theorem, the ring is prime.

Theorem 19. If all elements in a ring are left invertible, then the ring is a division ring.

Proof. Let 𝑥 ∈ 𝑅 be arbitrary. Then 𝑦𝑥 = 1 for some 𝑦 ∈ 𝑅. Since 𝑦 is left invertible, there
exists some 𝑧 such that 𝑧𝑦 = 1. By uniqueness of left and right inverses of 𝑦 it must hold that
𝑧 = 𝑥. Thus 𝑥 is invertible.

Theorem 20 (Brauer’s lemma). Suppose 𝐿 is a minimal (left) ideal of 𝑅 and 𝐿2 ≠ 0. Then
there exists an idempotent 𝑒 ∈ 𝐿 such that 𝐿 = 𝑅𝑒 and 𝑒𝑅𝑒 is a division ring.

Proof. By assumption, there exists 𝑦 ∈ 𝐿 such that 𝐿𝑦 ≠ 0. By minimality 𝐿 = 𝐿𝑦. Thus, there
exists 𝑒 ∈ 𝐿 such that 𝑒𝑦 = 𝑦. Let 𝐽 ⊆ 𝐿 be the set of elements in 𝐿 that annihilate 𝑦 from the
left.

Claim 1. 𝐽 is a left ideal of 𝑅 contained in 𝐿.

Proof. Let 𝑎, 𝑏 ∈ 𝐽 . Then (𝑎 + 𝑏)𝑦 = 𝑎𝑦 + 𝑏𝑦 = 0, so (𝑎 + 𝑏) ∈ 𝐽 . For any 𝑥 ∈ 𝑅, 𝑥𝑎𝑦 = 0 so
𝑥𝑎 ∈ 𝐽 .

The element 𝑒 is not in 𝐽 , therefore 𝐽 = 0 by minimality of 𝐿. Rearranging the previous
equality, (𝑒2 − 𝑒)𝑦 = 0 which implies 𝑒2 = 𝑒, since 𝑒2 − 𝑒 is in 𝐽 = 0. Clearly 𝑒 ≠ 0, and so by
minimality 𝑅𝑒 = 𝐿.

Let 𝑎 ∈ 𝑒𝑅𝑒 be non-zero. Then 0 ≠ 𝑅𝑎 = 𝑅𝑒𝑎𝑒 ≤ 𝑅𝑒 = 𝐿, so 𝑅𝑎 = 𝐿. Thus 𝑒 ∈ 𝑅𝑎, so
𝑒 = 𝑟𝑎 for some 𝑟 ∈ 𝑅. Then 𝑒 = 𝑒2 = 𝑒𝑟𝑒𝑎, so 𝑎 is invertible in 𝑒𝑅𝑒. We are done by 19

Theorem 21. (Already proven in Mathlib) A nonzero left artinian ring has a minimal left ideal.

Proof. If minimal left ideal does not exist, then starting with any nonzero left ideal, we can
allways find a strictly smaller nonzero left ideal. We can thus construct an infinite strictly
decreasing sequence of left ideals, which contradicts the left artinian property.

Definition 22 (Set of Matrix Units). A set 𝑒𝑖𝑗 for 𝑖, 𝑗 ∈ [1, 𝑛] is a set of matrix units of 𝑅 if

𝑒𝑖𝑗𝑒𝑘𝑙 = {𝑒𝑖𝑙 ∣ 𝑗 = 𝑘
0 ∣ otherwise

and ∑𝑛
𝑖=1 𝑒𝑖𝑖 = 1.
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Theorem 23. If 𝑅 has a set of matrix units 𝑒𝑖𝑗, then 𝑅 is isomorphic to the ring of 𝑛 × 𝑛
matrices over the corner ring 𝑒11𝑅𝑒11.

Proof. For 𝑎 ∈ 𝑅, denote 𝑎𝑖𝑗 = 𝑒1𝑖𝑎𝑒𝑗1. Then 𝑒11𝑎𝑖𝑗𝑒11 = 𝑒11𝑒1𝑖𝑎𝑒𝑗1𝑒11 = 𝑒1𝑖𝑎𝑒𝑗1 by the property
of matrix units. Then, the map 𝜙 claimed to be the isomorphism is 𝑎 ↦ (𝑎𝑖𝑗)𝑛

𝑖,𝑗=1.

Claim 2. 𝜙 is additive.

Proof. For 𝑎, 𝑏 ∈ 𝑅, we have: ((𝑎 + 𝑏)𝑖𝑗)𝑛
𝑖,𝑗=1 = (𝑒1𝑖(𝑎 + 𝑏)𝑒𝑗1)𝑛

𝑖,𝑗=1 = (𝑒1𝑖𝑎𝑒𝑗1 + 𝑒1𝑖𝑏𝑒𝑗1)𝑛
𝑖,𝑗=1 =

(𝑎𝑖𝑗 + 𝑏𝑖𝑗)𝑛
𝑖,𝑗=1

Claim 3. The map is multiplicative.

Proof. The (𝑖, 𝑗) entry of 𝜙(𝑎)𝜙(𝑏) is equal to

𝑛
∑
𝑘=1

𝑒1𝑖𝑎𝑒𝑘1𝑒1𝑘𝑏𝑒𝑗1 = 𝑒1𝑖𝑎
𝑛

∑
𝑘=1

𝑒𝑘𝑘𝑏𝑒𝑗1 = 𝑒1𝑖𝑎𝑏𝑒𝑗1,

which is the (𝑖, 𝑗) entry of 𝜙(𝑎𝑏). Therefore, 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏).
Claim 4. The map is injective.

Proof. Suppose 𝑎𝑖𝑗 = 0 for all 𝑖, 𝑗. Then 𝑒𝑖𝑖𝑎𝑒𝑗𝑗 = 𝑒1𝑖𝑎𝑖𝑗𝑒𝑗1 = 0. Therefore, 𝑎 = 𝑎(∑𝑛
𝑖=1 𝑒𝑖𝑖) =

∑𝑛
𝑖=1 𝑎𝑒𝑖𝑖 = ∑𝑛

𝑖,𝑗=1 𝑒𝑖𝑖𝑎𝑒𝑗𝑗 = 0.

Claim 5. The map is surjective.

Proof. Note the 𝜙(𝑒𝑘1𝑎𝑒1𝑙)𝑘𝑙 = 𝑒1𝑘𝑒𝑘1𝑎𝑒1𝑙𝑒𝑙1 = 𝑒11𝑎𝑒11 and 𝜙(𝑒𝑘1𝑎𝑒1𝑙)𝑎𝑏 = 𝑒1𝑎𝑒𝑘1𝑎𝑒1𝑙𝑒𝑏1 = 0 if
𝑎 ≠ 𝑘 or 𝑏 ≠ 𝑙, so 𝜙(𝑒𝑘1𝑎𝑒1𝑙) is a matrix whose all entries are zero, except the 𝑘-th and 𝑙-th entry
is non-zero, and can take arbitrary value in 𝑒11𝑎𝑒11. By additivity, the map is surjective.

Theorem 24. If a ring 𝑅 has a set of pairwise orthogonal idempotents 𝑒𝑖𝑖 and

• 𝑒1𝑖 ∈ 𝑒11𝑅𝑒𝑖𝑖 for all 𝑖,
• 𝑒𝑒1 ∈ 𝑒𝑖𝑖𝑅𝑒11 for all 𝑖,
• 𝑒1𝑖𝑒𝑒1 = 𝑒11

• 𝑒𝑖1𝑒1𝑖 = 𝑒𝑖𝑖 for all 𝑖,
then 𝑅 has matrix units.

Proof. Define 𝑓𝑖𝑗 = 𝑒𝑖1𝑒1𝑗.

Claim 6. For 𝑖 = 1, we have 𝑓1𝑗 = 𝑒1𝑗.

Proof. 𝑓1𝑗 = 𝑒11𝑒1𝑗. Since 𝑒1𝑗 ∈ 𝑒11𝑅𝑒𝑗𝑗, we have 𝑒11𝑒1𝑗 = 𝑒1𝑗 by theorem 13.

Claim 7. For 𝑗 = 1, we have 𝑓𝑖1 = 𝑒𝑖1 for all 𝑖.
Proof. 𝑓𝑖1 = 𝑒𝑖1𝑒11. Since 𝑒𝑖1 ∈ 𝑒𝑖𝑖𝑅𝑒11, we have 𝑒𝑖1𝑒11 = 𝑒𝑖1.

Claim 8. 𝑓1𝑗𝑓𝑘1 = 𝛿𝑗𝑘𝑓11 for all 𝑗, 𝑘
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Proof. 𝑓1𝑗𝑓𝑘1 = 𝑒11𝑒1𝑗𝑒𝑘1𝑒11 = 𝑒1𝑗𝑒𝑘1 = 𝑒11𝑟𝑒𝑗𝑗𝑒𝑘𝑘𝑟′𝑒11 = 𝛿𝑗𝑘𝑒11 for some 𝑟, 𝑟′, where the last
equality comes from the assumption that the diagonal elements are pairwise orthogonal.

Claim 9. 𝑓𝑖𝑗𝑓𝑘𝑙 = 𝛿𝑗𝑘𝑓𝑖𝑙.

Proof. By definition, 𝑓𝑖𝑗𝑓𝑘𝑙 = 𝑒𝑖1𝑒1𝑗𝑒𝑘1𝑒1𝑙 = 𝑓𝑖1𝑓1𝑗𝑓𝑘1𝑓1𝑙 = 𝛿𝑗𝑘𝑓𝑖1𝑓1𝑙 = 𝛿𝑗𝑘𝑒𝑖1𝑒1𝑙 = 𝛿𝑗𝑘𝑓𝑖𝑙 by the
previous claims.

Theorem 25. Let 𝑒, 𝑓 ∈ 𝑅 be nonzero orthogonal idempotents and 𝑅 a prime ring. Also let 𝑒𝑅𝑒
and 𝑓𝑅𝑓 be division rings.

Then there exist 𝑢, 𝑣 ∈ 𝑅 such that 𝑢 ∈ 𝑒𝑅𝑓 and 𝑣 ∈ 𝑓𝑅𝑒 such that 𝑢𝑣 = 𝑒 and 𝑣𝑢 = 𝑓.

Proof.

Claim 10. There exists 𝑎, 𝑏 ∈ 𝑅 such that 𝑒𝑎𝑓𝑏𝑒 ≠ 0.

Proof. Suppose 𝑒𝑅𝑓 = 0. By theorem 7, 𝑒𝑅𝑓 = 0 implies 𝑒 = 0 or 𝑓 = 0, a contradiction.
Therefore, there exists 𝑎 such that 𝑒𝑎𝑓 ≠ 0.

Suppose 𝑒𝑎𝑓𝑅𝑒 = 0. Then 𝑒 = 0 by theorem 7, a contradiction. Therefore, there exists 𝑏
such that 𝑒𝑎𝑓𝑏𝑒 ≠ 0.

Since 𝑒𝑅𝑒 is a division ring, there exists 𝑐 ∈ 𝑅 such that (𝑒𝑎𝑓𝑏𝑒)(𝑒𝑐𝑒) = 𝑒. Let 𝑢 = 𝑒𝑎𝑓 and
𝑣 = 𝑓𝑏𝑒𝑐𝑒, which belong to 𝑒𝑅𝑓 and 𝑓𝑅𝑒 respectively. Then 𝑢𝑣 = 𝑒𝑎𝑓𝑏𝑒𝑐𝑒 = 𝑒.

Note that 𝑣𝑢 ∈ 𝑓𝑅𝑓 and that 𝑣𝑢𝑣 = 𝑣𝑒 = 𝑣 = 𝑓𝑣. Therefore, (𝑣𝑢 − 𝑓)𝑣 = 0
Claim 11. 𝑣𝑢 = 𝑓.

Proof. Suppose not. Then 𝑣𝑢 − 𝑓 ≠ 0, but 𝑣𝑢 − 𝑓 is left invertible since 𝑓𝑅𝑓 is a division
ring. Multiplying by the left inverse, we get 𝑣 = 0 = 𝑓𝑣, a contradiction with the fact that
𝑢𝑣 = 𝑒 ≠ 0.

Theorem 26. If a prime ring 𝑅 contains pairwise orthogonal idempotents 𝑒𝑖𝑖 with sum 1 and
𝑒𝑖𝑖𝑅𝑒𝑖𝑖 is a division ring for every 𝑖, then 𝑅 is isomorphic to 𝑀𝑛(𝑒11𝑅𝑒11).
Proof. Applying the theorem 25 for 𝑒11 and each 𝑒𝑖𝑖, we define 𝑒1𝑖 = 𝑢𝑖 and 𝑒𝑖1 = 𝑣𝑖 for each 𝑖
wher 𝑢𝑖 and 𝑣𝑖 correspond to 𝑢 and 𝑣 in the theorem.

Claim 12. The defined elements satisfy the conditions of theorem 24.

Proof. By the conclusion of theorem 25, 𝑒1𝑖𝑒𝑖1 = 𝑒𝑖𝑖 and 𝑒𝑖1𝑒1𝑖 = 𝑒11 for all 𝑖, and 𝑒1𝑖 ∈ 𝑒11𝑅𝑒𝑖𝑖
and 𝑒𝑖1 ∈ 𝑒𝑖𝑖𝑅𝑒11. The 𝑒𝑖𝑖 are pairwise orthogonal by assumption.

By theorem 24, 𝑅 has matrix units, and by theorem 23 it is isomorphic to 𝑀𝑛(𝑒11𝑅𝑒11).
Theorem 27. If 𝑒, 𝑓 ∈ 𝑅 are idempotents and 𝑓 ∈ (1 − 𝑒)𝑅(1 − 𝑒) they are orthogonal. Further
𝑓𝑅𝑓 = 𝑓(1 − 𝑒)𝑅(1 − 𝑒)𝑓.

Proof. 𝑓 = 𝑓(1 − 𝑒) + 𝑓𝑒 = 𝑓 + 𝑓𝑒. Thus 𝑓𝑒 = 0. Similarly, 𝑒𝑓 = 0. Therefore, 𝑓 and 𝑒 are
orthogonal.

Note that 𝑥 ∈ 𝑓𝑅𝑓 ⟺ ∃𝑟, 𝑥 = 𝑓𝑟𝑓 = 𝑓 ⟺ ∃𝑟, 𝑥 = 𝑓(1 − 𝑒)𝑟(1 − 𝑒)𝑓 ⟺ 𝑥 ∈
𝑓(1 − 𝑒)𝑅(1 − 𝑒)𝑓 .
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Theorem 28 (Artin Wedderburn for prime rings). If 𝑅 is a prime ring and artinian, then 𝑅 is
isomorphic to 𝑀𝑛(𝐷) for some division ring 𝐷.

Proof. Since 𝑅 is artinian, it contains a minimal nonzero left ideal 𝐿. If 𝐿2 = 0, this would
imply by the prime condition that 𝐿 = 0, a contradiction. Therefore, 𝐿2 ≠ 0. By the Brauer
lemma, there exists an idempotent 𝑒 ∈ 𝐿 such that 𝐿 = 𝑅𝑒11 and 𝑒11𝑅𝑒11 is a division ring. By
theorem 11 for 𝑒 = 0 and 𝑓 = 𝑒11 we have that 𝑅 ⊋ 𝑅(1 − 𝑒11).

Suppose 𝑒11 ≠ 1. Then (1 − 𝑒11)𝑅(1 − 𝑒11) is a nonzero ring. It is also prime and artinian
by theorems 18 and 17. Repeating the argument for this ring, we obtain 𝑒22 such that 𝑒22(1 −
𝑒11)𝑅(1 − 𝑒11)𝑒22 is a division ring. Since 𝑒22 ∈ (1 − 𝑒11)𝑅(1 − 𝑒11) then must be orthogonal,
as by the theorem 27. Further 𝑅(1 − 𝑒11) ⊋ 𝑅(1 − 𝑒11 − 𝑒22). Repeating this process, we get a
sequence of 𝑒𝑖𝑖 and a sequence of left ideals 𝑅(1 − 𝑒11 − … − 𝑒𝑖𝑖). By the artinian condition, this
sequence must stabilize, so for some 𝑛, meaning that ∑𝑛

𝑖=1 𝑒𝑖𝑖 = 1. 𝑒𝑖𝑖 are pairwise orthogonal
and are idempotent. Additionally, all 𝑒𝑖𝑖𝑅𝑒𝑖𝑖 are division rings. By theorem 26, 𝑅 is isomorphic
to 𝑀𝑛(𝑒11𝑅𝑒11).
Theorem 29 (Artin Wedderburn for simple rings). If 𝑅 is a simple ring, then 𝑅 is isomorphic
to 𝑀𝑛(𝐷) for some division ring 𝐷.

Proof. Since 𝑅 is simple, it is prime. By theorem 28, 𝑅 is isomorphic to 𝑀𝑛(𝐷) for some division
ring 𝐷.

4 Generalization to semisimple ring
In this section, we prove the following result, which clearly generalizes Artin Wedderburn to
semisimple rings

Theorem 30. Let 𝑅 be a semisimple ring. Then, 𝑅 is isomorphic to a direct product of simple,
artinian rings.

Proof. WLOG, suppose, 𝑅 is not simple. We know that 𝑅 is (left) artinian, which is a stronger
condition that being (two-sided) artinian. Since it is (two-sided) artinian, it must contain a
nontrivial minimal (two-sided) ideal 𝐼 , which is therefore simple. Since 𝑅 is semisimple, 𝐼 must
be a direct summand of 𝑅 (AS A LEFT 𝑅-module). Thus, 𝑅 = 𝐼 ⊕ 𝐽 for some (left) ideal 𝐽 .
Then 1 = 𝑖 + 𝑗 for some 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 . Note that 𝐼 and 𝐽 are both nontrivial.

Claim 13. 𝐼𝐽 = 0.

Proof. Suppose 𝑥 ∈ 𝐼𝐽 . Then 𝑥 ∈ 𝐼 since 𝐼 is a twosided ideal. Also 𝑥 ∈ 𝐽 since 𝐽 is a left ideal.
But then 𝑥 = 0 since 𝐼 ∩ 𝐽 = 0.

Claim 14. 𝑖 is an idempotent.

Proof. 𝑖 = 𝑖1 = 𝑖(𝑖 + 𝑗) = 𝑖𝑖 + 𝑖𝑗 = 𝑖𝑖 by the previous claim.

Claim 15. 𝐼𝐼 = 𝐼.

Proof. By simplicity of 𝐼 , 𝐼𝐼 = 0 or 𝐼 . Since 𝑖𝑖 = 𝑖, the first case is impossible.

Claim 16. 𝐽𝐼 = 0.
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Proof. Note that 𝐽𝐼 is spanned by the set of all pairwise products of elements of 𝐽 and 𝐼 . Since
𝐽 is a left ideal and 𝐼 is a two-sided ideal, 𝐽𝐼 is a two-sided ideal. Then it can be either 0 or 𝐼
by simplicity of 𝐼 .

Suppose 𝐽𝐼 = 𝐼 . Then 𝐼 = 𝐼𝐼 = 𝐼(𝐽𝐼) = (𝐼𝐽)𝐼 = 0 ⋅ 𝐼 = 0, a contradiction.

Claim 17. 𝐽 is a two-sided ideal.

Proof. We know that it is a left ideal. For arbitrary 𝑥 ∈ 𝑅, write 𝑥 = 𝑥𝑖 + 𝑥𝑗. Let 𝑦 ∈ 𝐽 be
arbitrary. Then 𝑦𝑥 = 𝑦𝑥𝑖 + 𝑦𝑥𝑗 = 0 + 𝑦𝑥𝑗 ∈ 𝐽 , where 𝑦𝑥𝑖 = 0 since it is in 𝐽𝐼 . Thus 𝐽 is also a
right ideal.

Claim 18. 𝑅 = 𝐼 × 𝐽 as rings.

Proof. Let 𝑥 = 𝑥𝑖 + 𝑥𝑗 where 𝑥𝑖 = 𝑥𝑖 ∈ 𝐼 and 𝑥𝑗 ∈ 𝐽 . Similarly, let 𝑦 = 𝑦𝑖 + 𝑦𝑗. Then
𝑥𝑦 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑥𝑗𝑦𝑗 = 𝑥𝑖𝑦𝑖 + 𝑥𝑗𝑦𝑗 since 𝑥𝑖𝑦𝑗 = 0 and 𝑥𝑗𝑦𝑖 = 0 by the previous claims.
Thus, the map 𝑥 ↦ (𝑥𝑖, 𝑥𝑗) is a ring homomorphism.

Injective: Suppose 𝑥𝑖 = 𝑥𝑗 = 0. Then 𝑥 = 𝑥1 = 𝑥(𝑖 + 𝑗) = 0.
Surjective: let (𝑥𝑖, 𝑥𝑗) ∈ 𝐼 × 𝐽 be arbitrary. Let 𝑥 = 𝑥𝑖 + 𝑥𝑗. Note that 𝑥𝑖 = 𝑥𝑖𝑖 + 𝑥𝑖𝑗 = 𝑥𝑖𝑖

by orthogonality of 𝐼 and 𝐽 . Similarly 𝑥𝑗 = 𝑥𝑗𝑗. Then 𝑥𝑖 = (𝑥𝑖 + 𝑥𝑗)𝑖 = 𝑥𝑖𝑖 = 𝑥𝑖 and similarly
𝑥𝑗 = 𝑥𝑗. Thus (𝑥𝑖, 𝑥𝑗) is the image of 𝑥.

Claim 19. Let 𝐾 ⊆ 𝐼 be a left 𝐼-submodule of 𝐼, where 𝐼 is treated as a unital ring. Then 𝐾
is a left submodule of 𝑅.

Proof. Let 𝑟 ∈ 𝑅 and 𝑘 ∈ 𝐾. Then 𝑟𝑘 = 𝑟1𝑘 = 𝑟(𝑖 + 𝑗)𝑘 = 𝑟𝑖𝑘 + 𝑟𝑗𝑘 = 𝑟𝑖𝑘 ∈ 𝐾 since 𝑘 ∈ 𝐾,
𝑟𝑖 ∈ 𝐼 and 𝑟𝑗𝑘 = 0 as 𝑗 ∈ 𝐽 and 𝑘 ∈ 𝐼 and we know 𝐽𝐼 = 0. Thus 𝐾 is closed under left
multiplication by element of 𝑅.

Claim 20. Both 𝐼 and 𝐽 are artinian (as rings).

Proof. They are both submodules of 𝑅 which is assumed to be artinian. Submodules of artinian
modules are artinian. Note that 𝑅 is artinian since it is semisimple. Thus they are artinian as
left 𝑅-modules.

Let 𝐾1 ⊇ 𝐾2 ⊇ … be a descending chain of left ideals (modules) in ring 𝐼 . By the previous
claim, they are also left ideals in 𝑅. Since 𝑅 is artinian, this chain stabilizes. But then so does
𝐾1 ⊇ 𝐾2 ⊇ …. Thus 𝐼 is artinian. Same argument applies to 𝐽 .

Claim 21. 𝐽 is (left) semisimple.

Proof. A submodule of a semisimple module is semisimple. Thus 𝐽 is semisimple as a left 𝑅-
module. Let 𝐾 ⊆ 𝐽 be a left 𝐽 -submodule. Then 𝐾 is a left 𝑅-submodule by the previous claim.
Since 𝑅 is semisimple, every submodules of a submodules has a direct complement, call it 𝐾′.
Then 𝐽 = 𝐾 ⊕ 𝐾′, as 𝑅-modules. Since 𝐾′ is a left 𝑅-submodule, it is also a left 𝐽 -submodule.
Thus 𝐽 is semisimple as a left 𝐽 -module.

Thus, we can repeat the process of splitting 𝐽 (if it is not simple) into a direct product
of simple, artinian rings. Since 𝑅 is artinian, this process must stabilize, and we get a direct
product of simple, artinian rings.

Apply the 29 to each of the simple, artinian rings to get the desired result.
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